The Beginning and Development of the Theranostic Approach in Nuclear Medicine, as Exemplified by the Radionuclide Pair 86Y and 90Y
نویسندگان
چکیده
In the context of radiopharmacy and molecular imaging, the concept of theranostics entails a therapy-accompanying diagnosis with the aim of a patient-specific treatment. Using the adequate diagnostic radiopharmaceutical, the disease and the state of the disease are verified for an individual patient. The other way around, it verifies that the radiopharmaceutical in hand represents a target-specific and selective molecule: the "best one" for that individual patient. Transforming diagnostic imaging into quantitative dosimetric information, the optimum radioactivity (expressed in maximum radiation dose to the target tissue and tolerable dose to healthy organs) of the adequate radiotherapeutical is applied to that individual patient. This theranostic approach in nuclear medicine is traced back to the first use of the radionuclide pair 86Y/90Y, which allowed a combination of PET and internal radiotherapy. Whereas the β-emitting therapeutic radionuclide 90Y (t½ = 2.7 d) had been available for a long time via the 90Sr/90Y generator system, the β⁺ emitter 86Y (t½ = 14.7 h) had to be developed for medical application. A brief outline of the various aspects of radiochemical and nuclear development work (nuclear data, cyclotron irradiation, chemical processing, quality control, etc.) is given. In parallel, the paper discusses the methodology introduced to quantify molecular imaging of 86Y-labelled compounds in terms of multiple and long-term PET recordings. It highlights the ultimate goal of radiotheranostics, namely to extract the radiation dose of the analogue 90Y-labelled compound in terms of mGy or mSv per MBq 90Y injected. Finally, the current and possible future development of theranostic approaches based on different PET and therapy nuclides is discussed.
منابع مشابه
The current status and future of theranostic Copper-64 radiopharmaceuticals
Copper-64 was produced in large scales and high specific activities in late 1990s’ using compact cyclotrons based by 64Ni(p,n)64Cu reaction and many radiopharmaceuticals developed since then by various groups based on interesting physicochemical and nuclear properties of the radionuclide. The unique emission of beta particles as well as positron particles offers a spectacu...
متن کاملChanging Therapeutic Paradigms: Predicting mCRC Lesion Response to Selective Internal Radionuclide Therapy (SIRT) based on Critical Absorbed Dose Thresholds: A Case Study
A 65 year old male with metastatic colorectal cancer (mCRC) in the liver was referred for selective internal radionuclide therapy (SIRT) following a history of extensive systemic chemotherapy. 90Y PET imaging was performed immediately after treatment and used to confirm lesion targeting and measure individual lesion absorbed doses. Lesion dosimetry was highly predictive of eventual response in ...
متن کاملDevelopment of DOTA-Rituximab kit formulation to be labeled with 90Y for radioimmunotherapy of B-cell Non-Hodgkin Lymphoma
NHL is the most common hematologic cancer in adults. Rituximab is the FDA approved treatment of relapsed or refractory low grade B-cell Non-Hodgkin Lymphoma (NHL). But patients eventually become resistant to rituximab. Since lymphocytes and lymphoma cells are highly radiosensitive, low grade NHL that has relapsed or refractory to standard therapy is treated by RIT in which a beta-emitting radio...
متن کاملDevelopment of DOTA-Rituximab kit formulation to be labeled with 90Y for radioimmunotherapy of B-cell Non-Hodgkin Lymphoma
NHL is the most common hematologic cancer in adults. Rituximab is the FDA approved treatment of relapsed or refractory low grade B-cell Non-Hodgkin Lymphoma (NHL). But patients eventually become resistant to rituximab. Since lymphocytes and lymphoma cells are highly radiosensitive, low grade NHL that has relapsed or refractory to standard therapy is treated by RIT in which a beta-emitting radio...
متن کاملAn overview on Ga-68 radiopharmaceuticals for positron emission tomography applications
Gallium-68 a positron emitter radionuclide, with great impact on the nuclear medicine, has been widely used in positron emission tomography (PET) diagnosis of various malignancies in humans during more recent years especially in neuroendocrine tumors (NETs). The vast number of 68Ge/68Ga related generator productions, targeting molecule design (proteins, antibody fragments,...
متن کامل